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Abstract: We investigate the simultaneous approximation properties De la Vallée-Poussin 
means in Musielak-Orlicz spaces in terms of  the modulus of smoothness. In terms of  the 
modulus of smoothness the direct theorem of simıltaneous approximation is proved. Also in 
Musielak-Orlicz spaces the modulus of smoothness are estimated from below and above in 
terms n − th  partial sums and De la Vallée-Poussin means.  
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1. Introduction 
 

 Let T  denote the interval [ ],π π− . A function [ ] [ ]: 0, 0,ϕ ∞ → ∞  is called Φ−  

function (brieflyϕ∈Φ ) if ϕ  is convex and left –continuous and  

0
(0) : lim ( ) 0, lim ( )

xt
t xϕ ϕ ϕ

+ →∞→
= = = ∞ . 

A Φ− function ϕ  is said to be an N −  function if it is continuous and 
positive and satisfies 

0

( ) ( )lim 0 , lim
tt

t t
t t

ϕ ϕ
+ →∞→

= = ∞ . 

          Let ( )Φ T  be the collection of functions [ ] [ ]: 0, 0,ϕ × ∞ → ∞T  such 
that  
  ( ) ( , )i xϕ ⋅ ∈Φ  for every ;x∈T  
  ( )ii  ( , )x uϕ  is in ( )0L T ;x∈T  the set of measurable functions, for every 

0u ≥ . 
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         A function ( , ) ( )uϕ ⋅ ∈Φ T  is said to satisfy the 2∆  condition 2( )ϕ∈∆  
with respect to parameter u  if ( , 2 ) ( , )x u K x uϕ ϕ≤  holds for all 

, 0x u∈ ≥T , with some constant 2K ≥ . 
         Subclass ( ) ( )NΦ ⊂Φ T  consist of functions ( )ϕ∈Φ T  such that, for 
every , ( , )x xϕ∈ ⋅T  is an N −  function and 2ϕ∈∆ . 
         We use 1 2, , ,...c c c  to denote constants (which may,  in general,  differ 
in different relations) depending only on numbers that are not important for 
the questions of interest. 
 

2. Some Auxiliary Results And Main Results 

Two functions ϕ  and 1ϕ  are said to be equivalent (we shall write 1ϕ ϕ� ) if 
there 0c >  such that  

1 1( , ) ( , ) ( , )ux x u x cu
c

ϕ ϕ ϕ≤ ≤  

for all x  and .u  
           For ( )Nϕ∈Φ  we set  

( ) : ( , ( ) ) .f x f x dxϕρ ϕ= ∫T  

           Musielak – Orlicz space Lϕ  (or generalized Orlicz space) is the class 
of Lebesgue measurable functions :f → �T  satisfying the condition 

0
lim ( ) 0.fϕl

ρ l
→

=  

               The equivalent condition for 0 ( )f L T∈  to belong to Lϕ  is that 
( )fϕρ l < ∞  for some 0l > . Lϕ  becomes a normed space with the Orlicz 

norm  

[ ] { }: sup ( ) ( ) : ( ) 1f f x g x dx gψϕ
ρ= ≤∫T  

and with the Luxemburg norm 

: inf 0: 1ff ϕϕ
l ρ

l
  = > ≤  

  
 

where 
                                                

0
( , ) : sup( ( , )) , 0,

u
t v uv t u v tψ ϕ

≥
= − ≥ ∈T   

is the complementary function (with respect to variable v ) of ϕ  in the sense 
of Young. These two norms are equivalent : 
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[ ] 2f f f
ϕ ϕ ϕ
≤ ≤  

Young’s inequality 
                                      ( , ) ( , ) ,us x u x sϕ ψ≤ +                         (2.1) 

holds for complementary functions , ( )Nϕ ψ ∈Φ  where , 0u s ≥  and x∈T . 
           From Young’s inequality (1.1) we have  

[ ] ( ) 1f fϕϕ
ρ≤ +  , 

                                         ( )f fϕϕ
ρ≤  if 1f

ϕ
>  and ( )f fϕϕ

ρ≥  if 

1f
ϕ
≤ . 

            Hölder’s inequality  

[ ]( ) ( )f x g x dx f f
ϕ ϕ

≤∫T  

holds for complementary functions , ( )Nϕ ψ ∈Φ . The Jensen integral 
inequality can be formulated as follows. 
          If ϕ  is an N −  function and ( )r x  is a nonnegative measurable 
function, then  

1 1( ) ( ) ( ( ) ( ))
( ) ( )

f x r x dx f x r x dx
r x dx r x dx

ϕ ϕ
 
  ≤
 
 

∫ ∫∫ ∫T T
T T

 

Everywhere in this work we will assume that there exists a constant 0A >  

such that for all ,x y∈T  with 1
2

x y− ≤  we have 

                                           
1log( )( , ) , 1

( , )
x y

A
x u u u
y u

ϕ
ϕ

−≤ ≥                                  (2.2) 

there exist some constants 1 2, 0c c >  such that 
                                            1inf ( ,1)

x
x cϕ

∈
≥

T
                                                (2.3) 

and  

2( ,1) , ( ,1)x dx x cϕ ψ< ∞ ≤∫T   a.e on T .                                                (2.4) 

As can be seen from the definitions above, Musielak – Orlicz spaces are 
similar to Orlicz spaces but are defined by a more general function with two 
variables ( , )x tϕ . In these spaces, the norm is given by virtue of the integral 

( , ( ) )x f x dxϕ∫T , 
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It is know that in an Orlicz space, ϕ  would be independent of x , ( ( ) )f xϕ . 

The special cases ( ) pt tϕ =  and ( )( , ) p xx t tϕ =  give the Lebesgue spaces pL  
and the variable exponent Lebesgue spaces ( )p xL , respectively. In addition to 
being a natural generalization that covers results from both variable 
exponent and Orlicz spaces, the study of Musielak – Orlicz spaces can be 
motivated by applications to differential equations [ ]12,36 , fluid dynamics 

[ ]13,33 , and image processing [ ]5,7,16 . Detalied information on Musielak 

– Orlicz spaces can be found in the book by Musielak [ ]34    

            Example 2.1. Let [ ]: 1,p → ∞T  be in 0 ( )L T  such that for all 

,x y∈T  with 1
2

x y− ≤  we have the Dini – Lipschitz property. 

3( ) ( )
1log

cp x p y

x y

− ≤
 
 

− 

, 

with a  constant 3 0c > . Then the following function belong to ( )TΦ  and 
satisfy conditions (2.2), (2.3) and  (2.4) 

( )( ) ( , ) , sup ( ) ,p x

x
i x u u p xϕ

∈
= < ∞

T
 

( )( ) ( , ) log(1 ) ,p xii x u u uϕ = +  
( )( ) ( , ) (log(1 )) .p xiii x u u uϕ = +  

A function ( )Nϕ∈Φ  is in the class ( , )N DLΦ  if conditions (2.2), (2.3) and  
(2.4) are fulfilled. 
          For f Lϕ∈  we define the Steklov operator hA  by 

2

2

1( )( ) ( ) , 0 ,
h

hhv f x f x t dt h x
h

π
−

= − < < ∈∫ T . 

The characteristic function [ ], ( )a bK u  of a finite interval [ ],a b  is the function 
on �  defined thourgh 

[ ]
[ ]
[ ],

1, , ,
( )

0, , .a b

u a b
K u

u a b

 ∈= 
∉

 

The operator hv  can be written as a convolution integral [ ] [ ]6, .33 , 4 :p  
1( )( ) ( ) ( ) ,

2h hv f x f t R t x dt
π

= −∫T  
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where  

2 2,

2( ) : ( ).h hhR u K u
h
π

 − 
=  

Note that the kernel hR  satisfies the following conditions [6, p.33], [4]:  

4( )hR u du c≤∫T , 5( )hR u c≤ , h u π≤ ≤  and 6
1max ( )hu

R u c
h

≤ . 

            Let f Lϕ∈  and ( , )N DLϕ∈Φ . By reference [4, Lemma 2], the shift 
operator hv  is a bounded linear operator on :Lϕ  

( )hv f c f
ϕ ϕ
≤ . 

The function  

10
( , ) : sup ( ) , 0 1,2,3,...

i
i

l
l

hih
f I v f lϕ

δ ϕ

δ δ
=< ≤

Ω = Π − > =  

is called l th−  order modulus of smoothness of ( )pf L∈ T ,  where I  is the 
identity operator. 
             It can easily be shown that ( , )l fϕΩ ⋅  is a continuous, nonnegative 
and nondecreasing function satisfying the conditions 

0
lim ( , ) 0 , ( , ) ( , ) ( , )l l l lf f g f gϕ ϕ ϕ ϕδ

δ δ δ δ
→
Ω = Ω + ≤ Ω +Ω  

for , .f g Lϕ∈  
        Let  

                    0

1
( , )

2
ikx

k k
k k

a A x f c e
∞ ∞

= =−∞

+ =∑ ∑                                                 (2.5) 

be the Fourier series of the function 1( )f L∈ T  , 
where ( , ) : ( ( ) cos ( )sin ) , 1, 2,3,...,k k kA x f a f kx b f kx k= + =  ( )ka f  and 

( )kb f  are Fourier coefficients of the function 1( ).f L∈ T  
          The n th−  partial sums,  and De la Vallée – Poussin means [53] of 
series (2.5) are defined, respectively as  

0

1
( ): ( , ) ( , ) , 1, 2,3,...

2

n n
ikx

n n k k
k k n

aS f S x f A x f c e n
= =−

= = + = =∑ ∑  

2 11( ): ( , ) ( , ).
n

n n v
v n

V f V x f S x f
n

−

=

= = ∑  

Note that for the De la Vallée – Poussin means the integral representation  
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( ): ( , ) ( ) ( ) ,n n nV f V x f f x t K t dt
π

π−

= = −∫  

holds with kernel  
3
2 2

2
2

sin( )sin( )1( ) :
2 sin ( )

nt nt

n t
K t

nπ
= . 

          The best approximation to f Lϕ∈  in the class nΠ  of trigonometric 
polynomials of degree not exceeding n  is defined by  

{ }( ) : inf : .n n n nE f f T Tϕ ϕ
= − ∈Π  

Note that the existence of *
n nT ∈Π  such that  

*( )n nE f f Tϕ ϕ
= −  

follows,  for example, from Theorem  1.1 in [9, p.59]. 
          Let ( 1, 2,3,...) , ( , )rW r N DLϕ ϕ= ∈Φ  be the class of functions such 

that ( 1)rf −  is absolutely continuous and ( )rf Lϕ∈  becomes a Banach space 
under the consideration of the norm  

( ):r
r

W
f f f

ϕ ϕ ϕ
= + . 

         We use 1 2, , ,...c c c  to denote constants (which may,  in general,  differ 
in different relations) depending only on numbers that are not important for 
the questions of interest. 
            In the proof of the main results we need the following results. 
         Theorem 2.1. [4]. For every ( ) , ( , )rf W r N DLϕ ϕ∈ ∈ ∈Φ�  and 
n∈�  the inequality 

( )7( ) ( )
( 1)

r
n nr

cE f E f
nϕ ϕ≤
+

 

holds with a constant 7 0c >  depending only on ϕ  and .r  
        Theorem 2.2. [4].  Let , ( , )f L N DLϕ ϕ∈ ∈Φ  and .n∈�  Then the 
estimate  

8
1( ) ( , )

1
l

nE f c f
nϕ ϕ≤ Ω
+

 

holds with a constant 8 0c >  depending only on ϕ  and .r  
Using Theorem 2.1 and  2.2 we have the following Corollary: 
        Corollary 2.1. For every ( ) , ( , )rf W r N DLϕ ϕ∈ ∈ ∈Φ�  and n∈�  the 
inequality 
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( )9 1( ) ( , )
( 1) 1

l r
n r

cE f f
n nϕ ϕ≤ Ω
+ +

 

holds with a  constant 9 0c >  depending only on ϕ  and .r  
       Lemma 2.1. [4]. Let , ( , )f L N DLϕ ϕ∈ ∈Φ  and  n∈� . Then for each 
trigonometric polynomial nT  of degree n  the inequality  

( )
10( ) r r

n nT c n T
ϕϕ

≤        ,   1,2,3,...r =  

holds with a  constant 10 0c >  depending only on ϕ  and .r  
Using the method of proof of [44, Theorem 2.1 ] and Theorem 2.2 we can 
prove the following Theorem: 
         Theorem 2.3. Let ( ) , ( , )rf W r N DLϕ ϕ∈ ∈ ∈Φ�  and n∈�  . Then 
the inequality 

( )11
.

1( ) ( , )
( 1) 1

l r
n M wr

cf V f f
n nϕ

− ≤ Ω
+ +

 

holds with a  constant 11 0c >  depending only on ϕ  and .r  
          Theorem 2.4. Let *

nT  be the best approximation polynomial to  .f  
Then for every ( 0,1, 2,...) , ( , )rf W r N DLϕ ϕ∈ = ∈Φ  and n∈�  the 
inequality  

( ) * ( ) ( )
12( ) ( )r r r

n nf T c E f ϕϕ
− ≤  

holds with a  constant 12 0c >  depending only on ϕ  and .r  
            Proof of  Theorem 2.4.  We set  

21( ) : ( , ) ( , ) , 0,1, 2,...
1

n

n n v
v n

B f B x f S x f n
n =

= = =
+ ∑  

Since  
( ) ( )(., ) (., ) ,n nB f B fα α=  

we have  
( ) *( ) ( , )nf T fα

ϕ
⋅ − ⋅  

( ) ( )( ) ( , )nf B fα α

ϕ
≤ ⋅ − ⋅  

( ) ( )( , ( )) ( , )n n nT B f T fα α

ϕ
+ ⋅ − ⋅  

( ) ( )( , ) ( , ( ))n n nB f T B fα α

ϕ
+ ⋅ − ⋅  

                         1 2 3I I I= + +   .                                              (2.6) 
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           Let ( , )nT x f  be the best approximiting polynomial of degree at most 
n  to f  nin Lϕ . From the boundedness of nB  in Lϕ  we have  

( ) ( ) ( ) ( )
1 ( ) ( , ) ( , ) ( , )n n nI f T f T f B fα α α α

ϕ ϕ
≤ ⋅ − ⋅ + ⋅ − ⋅  

                      ( ) ( ) ( ) ( ) ( )
14 15( ) ( , ( )) ( )n n n nc E f B T f f c E fα α α α α

ϕ ϕϕ
≤ + ⋅ − ≤  2.7) 

and by Lemma 2.1 
                                     2 16 ( , ( )) ( , )n n nI c n T B f T fα

ϕ
≤ ⋅ − ⋅                        (2.8) 

and  
                                       3 17 (2 ) ( , ) ( , ( ))n nI c n B f T B fα

ϕ
≤ ⋅ − ⋅  

                                                18 (2 ) ( ( )) .n nc n E B fα
ϕ≤                             (2.9) 

The following inequalities hold:  
( , ( )) ( , )n n nT B f T f

ϕ
⋅ − ⋅  

( , ( )) ( , )n n nT B f B f
ϕ

≤ ⋅ − ⋅  

( , ) ( ) ( ) ( , )n nB f f f T f
ϕ ϕ

+ ⋅ − ⋅ + ⋅ − ⋅  

                     19 20 21( ( )) . ( ) ( ) ,n n n nc E B f c E f c E fϕ ϕ ϕ≤ + + (2.10) 
                                        22( ( )) . ( ) .n n nE B f c E fϕ ϕ≤                                 (2.11) 
Use of (2.8), (2.9) and (2.11) gives us  
                                2 23 ( ) ,nI c n E fα

ϕ≤                                                    (2.12) 

                             3 24 (2 ) ( ) .nI c n E fα
ϕ≤                                                  (2.13) 

Taking into account the relations (2.6),  (2.7), (2.12) and (2.13) we get  
                                 ( )( ) ( ) ( , )nf T fα α

ϕ
⋅ − ⋅  

( )
25 26 27( ) ( ) (2 ) ( ( )) .n n n nc E f c n E f c n E B fα α α

ϕ ϕ ϕ≤ + +  

       ( )
28( ) ( ) .n nE f c n E fα α

ϕ ϕ≤ +                                                            (2.14) 
According to Theorem 2.1 the relation  

                                 ( )29( ) ( )
( 1)n n

cE f E f
n

α
ϕ ϕα≤

+
                                 (2.15) 

holds. Using (2.14) and (2.15) we have  
                                         ( ) ( ) ( )

30( ) ( , ) ( ) .n nf T f c E fα α α
ϕϕ

⋅ − ⋅ ≤  

The proof of Theorem 2.4 is completed. 
           Note that polynomial approximation problems in Musielak – Orlicz 
spaces have a long history. Orlicz spaces, which satisfy the translation 
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invariance property, are a particular case of Musielak – Orlicz spaces. In 
these spaces, polynomial approximation problems were investigated by 
several mathematicians in [1, 8, 10, 18-20, 23-28, 31, 32, 39, 40, 52, 55, 
56]. In general, Musielak – Orlicz spaces may not attain the translation 
invariance property, as can be seen in the case of variable exponent 
Lebesgue spaces ( ).p xL . Several inequalitiers of trigonometric polynomial 
approximation in ( ).p xL  were obtained in [2, 3, 15, 17, 43, 45]. Note that,  
under the translation invariance hypothesis on Musielak – Orlicz space, 
Musielak obtained some trigonometric approximation inequalities in [35]. 
         In the present paper we investigate the simultaneous approximation 
properties of De la Vallee – Poussin means in Musielak – Orlicz spaces in 
terms l th−  order modulus of smoothness. Also , we estimate the modulus 
of smoothness from below and above in terms n th−  partial sums and De la 
Vallée – Poussin means in Musielak-Orlicz spaces. Similar problems in 
different spaces have been investigated by several researchers (see, for 
example ,[11, 14, 21, 22, 29, 30, 37, 38, 41, 42, 46-51, 54, 57]). 
         Our main results are as follows.  
         Theorem 2.5.  Let ( ), ( , ), , 0,1, 2,...,rf W r N DL mϕ ϕ∈ ∈ ∈Φ =�  r  
and .n∈�  Then the estimate  

( ) ( ) ( )31 1( ) ,m m l r
n r m

cf V f f
n nϕϕ −

 − ≤ Ω  
 

 

holds with a  constant 31c >0 independent of .n  
           Theorem 2.6. Let f Lϕ∈  , ( , )N DLϕ∈Φ  and .n∈�  Then the 
following inequalities hold:  
1. 

( )2 (2 )
32

1 , ( ) ( )l l l
n nc f n V f f V f

nϕ ϕϕ

− Ω ≤ + − 
 

 

                                   33
1 , ,lc f
nϕ

 ≤ Ω  
 

                                                   (2.16) 

where the constants 32c  and 33c  independent of ..n  
2. 

              ( )2 (2 )
34

1 , ( ) ( )l l l
n nc f n S f f S f

nϕ ϕϕ

− Ω ≤ + − 
 

 

                          35
1 , ,lc f
nϕ

 ≤ Ω  
 

                                                            (2.17) 
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where the constants 34c  and 35c  independent of .n  
 
3.  Proofs of the main results 
          Proof of  Theorem 3.1. Let rf Wϕ∈  and * ( 0,1, 2,...)n nT n∈Π =  be the 
polynomial of best approximation to .f  The following inequality holds: 
                         ( ) ( ) ( )m m

nf V f
ϕ

−  

                            ( ) * ( ) * ( ) ( )( ) ( ) ( )m m m m
n n nf T T V f

ϕ ϕ
≤ − + −                       (3.1) 

By virtue of Theorem 2.2 and 2.3 we get  
                       ( ) * ( ) ( )

36( ) ( )m m m
n nf T c E f ϕϕ

− ≤  

                     ( ) ( )37 38 1( ) ,r l r
nr m r m

c cE f f
n n nϕ ϕ− −

 ≤ ≤ Ω  
 

.                                (3.2)  

On the other hand using Lemma 2.1, Theorem 2.3 and Corollary 2.1 we 
obtain that  

{ }
* ( ) ( )

*
39

( ) ( )

( )

m m
n n

m
n n

T V f

c n V f f f T

ϕ

ϕ ϕ

−

≤ − + −
 

                                                 ( )16
40 .

1 , ( )m l r
nr

cc n f E f
n nϕ ϕ

  ≤ Ω +  
  

 

                                            ( )41 1 , .l r
r m

c f
n nϕ−

 ≤ Ω  
 

                                     (3.3) 

use of (3.1) , (3.2) and (3.3) , gives us  

                                           ( ) ( ) ( )42 1 ,m m l r
n r m

cf T f
n nϕϕ −

 − ≤ Ω  
 

 

The proof of Theorem 2.5 is compled. 
         Proof of Theorem 3.1. According to [4] the inequality  
  

                                        2 (2 )
43

1 , ( ) ( )l l l
n nV f c n V f

nϕ ϕ

− Ω ≤ 
 

                 (3.4) 

holds. Taking into account the properties of modulus of smoothness 
1( , )l
n fϕΩ and (3.4) we conclude that  
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1 ,

1 1( , ( )) ( , ( ))

l

l l
n n

f
n

f V f V f
n n

ϕ

ϕ ϕ

 Ω  
 

 ≤ Ω − +Ω 
 

 

                                          ( )2 (2 )
44 ( ) ( ) .l l

n nc f V f n V f
ϕ ϕ

−≤ − +            (3.5) 

We estimate the modulus of smoothness , ( , )l
M w fΩ ⋅  from below. 

Considering Theorem 2.1 and [4] the following inequalities hold:  

                                                  45
1( ) , ,

1
l

nE f c f
nϕ ϕ

 ≤ Ω  + 
                     (3.6) 

                                             2 (2 )
46

1( ) , .
1

l l l
nn V f c f

nϕϕ

−  ≤ Ω  + 
             (3.7) 

          Let ( , )nV f x  be the de la Vallée – Poussin sums of the series (2.5) and 
let *

n nT ∈Π  be the polynomial of best approximation to f  in ,Lϕ  that is 
* ( )n nf T E f ϕϕ

− = . Then we can write the following inequality : 

* *

( )

( )

n

n n n

f V f

f T T V f
ϕ

ϕ ϕ

−

≤ − + −
 

                                                       *
47 ( ) ( , )n n nc E f V T fϕ ϕ

≤ + − ⋅  

                                                   48 ( ) .nc E f ϕ≤                                            (3.8) 
Comparing the estimates (3.6), (3.7) and (3.8) we find that  
                              2 (2 ) ( ) ( )l l

n nn V f f V f
ϕϕ

− + −  

                               49
1 , ( ) ( )

1
l

n nc V f E f
nϕ ϕ

  ≤ Ω +  +  
 

                              50
1 1( , ) ( , ( )) ( )

1 1
l l

n nc f f V f E f
n nϕ ϕ ϕ

 ≤ Ω +Ω − + + + 
 

                            51
1( , ).

1
lc f

nϕ≤ Ω
+

                                                        (3.9) 

Taking into account the relations (3.5) and (3.9) we obtain estimation (2.16) 
of Theorem 3.1. 
According to [4] there exists a constant 52 0c >  such that  
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                                  52( ) ( ) .n nf S f c E f ϕϕ
− ≤                                      (3.10) 

The proof of the estimation (2.17) is obtained in analogy to proof of the 
estimation (2.16) using the inequality (3.10). 
Theorem 3.1 isproved. 
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